
Free-boundary models of a meltwater conduit
Michael C. Dallaston and Ian J. Hewitt 

 
Citation: Physics of Fluids (1994-present) 26, 083101 (2014); doi: 10.1063/1.4892389 
View online: http://dx.doi.org/10.1063/1.4892389 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/26/8?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Stratified atmospheric flow modeling 
AIP Conf. Proc. 1504, 1174 (2012); 10.1063/1.4772136 
 
Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scalinga) 
Phys. Fluids 22, 021303 (2010); 10.1063/1.3319073 
 
A free-boundary theory for the shape of the ideal dripping icicle 
Phys. Fluids 18, 083101 (2006); 10.1063/1.2335152 
 
 -plane turbulence in a basin with no-slip boundaries 
Phys. Fluids 18, 026603 (2006); 10.1063/1.2173285 
 
Stalactite growth as a free-boundary problem 
Phys. Fluids 17, 083101 (2005); 10.1063/1.2006027 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  192.76.8.15

On: Tue, 12 Aug 2014 15:03:11

http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2030363672/x01/AIP-PT/Pfeiffer_PoPArticleDL_072314/13265_PV_Product_Range_Banner.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Michael+C.+Dallaston&option1=author
http://scitation.aip.org/search?value1=Ian+J.+Hewitt&option1=author
http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://dx.doi.org/10.1063/1.4892389
http://scitation.aip.org/content/aip/journal/pof2/26/8?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4772136?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/22/2/10.1063/1.3319073?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/18/8/10.1063/1.2335152?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/18/2/10.1063/1.2173285?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/17/8/10.1063/1.2006027?ver=pdfcov


PHYSICS OF FLUIDS 26, 083101 (2014)

Free-boundary models of a meltwater conduit
Michael C. Dallastona) and Ian J. Hewitt
Mathematical Institute, University of Oxford, Oxford, United Kingdom

(Received 8 April 2014; accepted 21 July 2014; published online 12 August 2014)

We analyse the cross-sectional evolution of an englacial meltwater conduit that con-
tracts due to inward creep of the surrounding ice and expands due to melting. Making
use of theoretical methods from free-boundary problems in Stokes flow and Hele–
Shaw squeeze flow we construct an exact solution to the coupled problem of external
viscous creep and internal heating, in which we adopt a Newtonian approximation
for ice flow and an idealized uniform heat source in the conduit. This problem pro-
vides an interesting variant on standard free-boundary problems, coupling different
internal and external problems through the kinematic condition at the interface. The
boundary in the exact solution takes the form of an ellipse that may contract or
expand (depending on the magnitudes of effective pressure and heating rate) around
fixed focal points. Linear stability analysis reveals that without the melting this so-
lution is unstable to perturbations in the shape. Melting can stabilize the interface
unless the aspect ratio is too small; in that case, instabilities grow largest at the
thin ends of the ellipse. The predictions are corroborated with numerical solutions
using boundary integral techniques. Finally, a number of extensions to the ideal-
ized model are considered, showing that a contracting circular conduit is unstable
to all modes of perturbation if melting occurs at a uniform rate around the bound-
ary, or if the ice is modelled as a shear-thinning fluid. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4892389]

I. INTRODUCTION

Melt or rainwater that runs into the body of an ice sheet flows through a network of conduits, both
englacially and subglacially (i.e., within the ice, and between the ice and the underlying bedrock).1

The size and shape of these conduits is governed by two competing effects: melting, due to viscous
dissipation and heat advected by the water flow, and inward creep due to the surrounding ice flow.
The latter occurs because the water pressure is less than the cryostatic pressure in the ice; on time
scales greater than around a day, glacier ice behaves as a viscous, shear thinning fluid.2

A model for these competing effects was developed by Röthlisberger,3 and similar models
are becoming an important component of modern ice-sheet simulations.4 A chief assumption in
Röthlisberger’s model is that conduits are circular in cross-section (or semicircular if at the base of
the glacier, which is then made equivalent to a circle by symmetry). Under that assumption, an exact
solution for a contracting circular cavity in a power-law fluid may be used to describe the ice creep.5

Combined with a parameterization for the wall melting, this provides a simple evolution equation
for the conduit’s cross-sectional area that can be included in glacier-scale drainage models. For
instance, some models feature networks of such conduits,6 or interaction with a distributed drainage
system.7

In practice, conduits are rarely observed to be circular in cross section. In fact, as we discuss in
this paper, there are theoretical reasons why one might expect them not to be circular, since the simple
contraction of a circular cavity is in fact unstable to perturbations in its shape. There are relatively
few theoretical studies that have not assumed circular symmetry, however. Hooke8 prescribed the
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shape as a circular segment instead, and Ng9 considered a slender channel approximation. Numerical
modelling using finite elements has been undertaken by Cutler,10 and a related problem of open-
channel flow on the glacier surface was considered by Jarosch and Gudmundsson.11

Our aim in this paper is to examine the evolution of a conduit cross-section without making any
a priori assumptions about its shape. To this end, we use idealized models that enable us to draw
on the connection with other two-dimensional free-boundary viscous flow problems. The literature
on such problems is extensive.12 Although the free boundary makes them generally nonlinear and
highly nontrivial (at least when symmetry is not assumed), the application of complex variable
theory has enabled the construction of many families of explicit solutions, usually in the form of
conformal mapping functions that transform a fixed domain to the evolving fluid domain. We adopt
some of these methods to develop exact solutions for the conduit shape and to analyse its stability.

In Sec. II, we formulate a model of the meltwater conduit and outline related mathematical
concepts. The model incorporates the inward creep of a viscous fluid surrounding a two-dimensional
cavity, and melting at the cavity interface caused by heat generation within it. We take the creep-
ing flow to be Newtonian, and the heat to be generated uniformly throughout the cavity, with the
temperature governed by Poisson’s equation and a Stefan condition at the interface. While this may
not be an accurate description of dissipation in turbulent water flow, it allows significant analytic
progress to be made while accounting for the effect of both creep and melting. The external and
internal problems are coupled together through the kinematic condition at the interface. Indepen-
dently, these external and internal problems correspond to previously studied problems in the free
boundary literature; the external creep of ice is equivalent to a contracting bubble in Stokes flow,13–15

and the melting due to uniform heating is equivalent to the problem of Hele–Shaw squeeze flow,15–18

where a viscous fluid is pressed between two plates. The interesting and novel aspect of this paper
is the combination of both creep due to the external Stokes problem and melting due to the internal
heating problem.

In Sec. III, we examine some of the exact solutions for each of the two free-boundary problems.
Considered independently, both the Stokes and heating problems have a solution in which the
free boundary is an ellipse that contracts or grows while remaining confocal (that is, with fixed
focal points). Consequently, such ellipses are also solutions of the coupled problem. Of course,
a circle is a special case of this solution. A steady-state may occur if the effective pressure and
heating are in balance; for a given pressure, a thinner ellipse requires a greater amount of heating
to be steady. Ellipses have arisen previously as exact solutions to two-phase harmonic19, 20 and
biharmonic21 free boundary problems, although to our knowledge this is the first example which
features both harmonic (heating) and biharmonic (Stokes flow) fields in a single problem. From
the exact solutions we also surmise that the aspect ratio of a contracting cavity increases, and that
cavities that have a small aspect ratio will contract faster than the circular cavity-based model
suggests; in fact, a non-circular elliptical cavity can close in finite time, whereas a circular one can
only decrease in area exponentially. A similar result has also been found in less idealized numerical
models.10

In Sec. IV, we consider the stability of the circle or ellipse to perturbations. The mathematical
theory predicts that contracting free boundaries in Stokes flow alone are unstable, and form cusps in
finite time.13, 14 This instability has been observed in (non-ice related) experiments, although in the
context of a compressed planar surface rather than a contracting circle.22 The addition of melting at
the boundary might be expected to introduce diffusive effects that ameliorate this instability; indeed,
we find that our model of uniform heating in the conduit stabilizes the interface to a certain extent.
We show that the stability depends only on the aspect ratio; a sufficiently fat ellipse (large aspect
ratio) is stable to perturbations, but becomes unstable to higher frequency modes as it becomes
thinner (that is, as aspect ratio tends to zero). The instability is largest near the ends of the ellipse,
where curvature is greatest. We demonstrate the results using numerical boundary integral methods
that are adapted from those previously applied to free-boundary Stokes flow.23–25 The numerical
solutions suggest that cusps may form when the aspect ratio is smaller than the critical value found
from the linear stability analysis.

We conclude in Sec. V with a discussion of extensions to the model. First, we consider the
possibility of feedback between the cross-sectional area and the heating rate, as is included in the
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Röthlisberger channel theory. We also discuss linear stability and numerical results when the heating
is assumed to be confined to the interface so that the melt rate is uniform along the perimeter. In
that case, the circle remains unstable to all perturbations, but with nonzero melting, the instability
intriguingly results in inward-pointing corners, rather than outward-pointing cusps. Finally, we
include a stability analysis for the case of a contracting circle surrounded by a shear-thinning power
law fluid, as may be more appropriate for ice. As in the Newtonian case, the interface is unstable
to all modes of perturbation; the major difference is that lower frequency modes of perturbation are
less unstable than higher frequency ones.

II. MATHEMATICAL FORMULATION

The mathematical model consists of two distinct systems, each posed in a region of the plane: a
model for the viscous flow of ice in a region �i(t) outside a simple closed curve ∂�(t), and a model
of heat flow in the region �c(t) inside ∂�(t) (see Figure 1). The curve ∂�(t) represents the conduit
wall, and the kinematic condition at this interface couples the external and internal problems.

A. Stokes flow

The flow of ice in �i is modelled using Newtonian Stokes flow, with the stress tensor σ and
velocity vector u satisfying

∇ · σ = 0, ∇ · u = 0, σ = −p I + μD, x ∈ �i . (1a)

Here, σ has been decomposed into the pressure p and viscous stress tensor τ , which has a linear
dependence on the strain rate tensor D = ∇u + ∇T u; the coefficient μ is the viscosity. The creep
closure is driven by a far field pressure p∞, and we assume a constant water pressure inside the
channel that we take to be zero (thus, p∞ is the pressure difference, referred to in the glaciological
context as the effective pressure). Neglecting surface tension, the boundary conditions are thus

σ · n = 0, x ∈ ∂�, (1b)

p → p∞, |x| → ∞. (1c)

FIG. 1. A schematic of the coupled creep closure/melting free boundary problem (1), (9), (10).
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For Newtonian flow, it is convenient to formulate the problem in terms of the nondimensional Airy
stress function A, whose second partial derivatives give the components of the stress tensor14, 26

σ = μ[t]

[
−Ayy Axy

Ayx −Axx

]
. (2)

Here, [t] is a characteristic time scale, which we leave arbitrary. The Stokes flow problem and
boundary conditions (1) are equivalent to

∇4 A = 0, x ∈ �i , (3a)

A = ∇A · n = 0, x ∈ ∂�, (3b)

∇2 A → P, |x| → ∞, (3c)

where P = p∞μ−1[t]−1 is the nondimensional far field pressure.
To obtain the velocity components, we require the streamfunction ψ , which is related to A by

the complex Goursat representation14

A + iψ = φ(z)z + χ (z), (4)

where φ and χ , called the Goursat functions, are analytic in �i. In terms of these Goursat functions,
the complex velocity and the pressure are14

u + iv = −φ + zφ′ + χ ′, p = 4�(φ′). (5)

B. Heating

Inside the conduit we assume a uniform heat source density q, and solve for the temperature
T, with diffusion occurring much faster than the time scale on which the boundary evolves. The
temperature thus satisfies Poisson’s equation

K∇2T = −q, x ∈ �c, (6)

where q is the heat source density and K is the thermal conductivity. On the interface, T is at
the constant melting temperature, shifted without loss of generality to zero. We assume the ice is
everywhere at the melting temperature, so there is no heat flow in �i; all heat goes into melting at
the boundary, leading to a melt rate m given by

m = K

ρL
∇T · n, x ∈ ∂�, (7)

where L is the latent heat. From (7) we find a temperature scale

[T ] = ρL[x]2

K [t]
, (8)

given a length scale [x], and we see that the neglect of time derivatives from (6) is equivalent to the
(reasonable) assumption that the Stefan number, ρL/[T], is large. The nondimensional temperature
now satisfies

∇2T = −Q, x ∈ �c, (9a)

T = 0, x ∈ ∂�, (9b)

where Q = q[t]ρ−1L−1 is the nondimensional heat source density.
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C. Coupled interface motion

Under the above scalings the normal velocity of the boundary, vn , is given by the kinematic
condition that includes both the inward creep and melting terms

vn = u · n − ∇T · n, x ∈ ∂�. (10)

The problem has two nondimensional parameters, P (scaled pressure) and Q (scaled heat source
density). Although one parameter could be eliminated by specifying the time scale [t], we keep both
in what follows so that the effects of creep closure and heating remain clear. In addition, the system
is invariant to changes in length scale, so [x] is arbitrary.

The assumption of uniform heating across the area of the channel is a significant idealisation.
As most heat in turbulent conduit flow is generated in a boundary layer near the walls, an alternative
approximation is to take m in (7) to be spatially uniform along the boundary, rather than solving
for the temperature distribution in �c. Under such an assumption, a circular conduit is unstable
to all modes of perturbation (see Sec. V B). Ultimately, a detailed boundary layer-based model of
turbulent heating that takes the wall geometry into account may provide a more realistic model, but
that is beyond the scope of this paper.

III. EXACT SOLUTIONS FROM COMPLEX VARIABLE THEORY

In this section, we show that the combined problem (3), (9), (10) admits exact solutions in the
form of ellipses whose focal points are fixed in time. We review some relevant results on the theory
of exact solutions for free boundary Stokes flow and Hele–Shaw squeeze flow, which are equivalent
to our model of ice flow (3) and melting by uniform heating (9), respectively. In particular, each
problem admits a solution where the free boundary is an ellipse that expands or contracts while
remaining confocal.

The fact that both of these “single-phase” problems have confocal ellipses as an exact solution
means that they can be combined to produce an exact solution of the full two-phase problem. As seen
below, this is because the two terms in the kinematic condition (10) both have the same particular
spatial dependence, which ensures that an ellipse with the same focal points is maintained as the
boundary evolves.

A. Stokes flow

First, we consider the Stokes flow problem in isolation (Q = 0 in (9), so T ≡ 0). Exact solutions
for the inward creep of viscous fluid have been constructed using conformal mapping,13, 14 recently
extended to larger classes of solutions by using a Cauchy transform approach.15 These solutions take
the form of rational functions (with time-dependent coefficients) of an auxiliary variable ζ , which
map the unit disc |ζ | < 1 in the complex plane, to the fluid region �i, and thus the unit circle |ζ |
= 1 to the free boundary ∂�. Here, we only consider the simplest nontrivial (that is, non-circular)
example, which is that given by the mapping

z = f (ζ, t) = c−1(t)ζ−1 + ck−1(t)ζ k−1. (11)

Here, k is a positive integer, and the coefficients c−1 and ck − 1 are taken to be real-valued functions
of time. The boundary ∂� given by this map is a k-fold symmetric shape, and if ck − 1 	 c−1, it
is equivalent to a circle of radius c−1 perturbed by a kth mode sinusoidal perturbation. The two
coefficients evolve by14

ċ−1 = − 1
2 Pc−1,

d

dt
(c−1ck−1) = 0, (12)

so that the leading order radius decays exponentially, while any modes of perturbation grow ex-
ponentially at a rate independent of the mode number k, hence the boundary is unstable. More
generally, (12) implies that, for k > 2, the boundary will form cusps at a time before it contracts to a
point (see Figure 2). The cusp formation corresponds to the critical points of the mapping function
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FIG. 2. The exact solution for a contracting cavity in Newtonian Stokes flow given by the conformal mapping (11), with
symmetry k = 4. As it contracts, the boundary is unstable and develops cusps at a time before the channel contracts to a point.

f (that is, points where fζ = 0) intersecting the unit circle. Beyond this time the exact solution is no
longer valid, as f is no longer one to one.

A special case is k = 2, in which case (11) maps the unit circle exactly to an ellipse with
semiaxes a = c−1 + c1 and b = c−1 − c1. In this case, cusp formation occurs at the same time as
extinction. The focal points of an ellipse are at ±√

a2 − b2 = ±2
√

c−1c1, thus from (12) the focal
points are fixed in time. Writing (12) in terms of the evolution of the semi-axes

ȧ = − 1
2 Pb, ḃ = − 1

2 Pa. (13)

For a circle, a = b, and (13) gives exponential decay for the radius, and thus the area. If a > b, then
b contracts faster than a, becoming zero in finite time.

For reference in the coupled problem, we note that the normal velocity on the boundary of this
ellipse (which provides the kinematic boundary condition) is

u · n = − 1
2 P

√
b2x2

a2
+ a2 y2

b2
. (14)

B. Heating

Now we consider uniform heating in isolation (P = 0 in (3), thus u ≡ 0). Classes of exact
solutions have been constructed to this problem,15, 17, 18 again using complex variable methods. For
example, one can use the following rule regarding the evolution of the Cauchy transform U(z, t), a
complex valued function that characterizes the boundary ∂�(t):

∂

∂t

(
e−QtU (z, t)

) = 0, U (z, t) = 1

2π i

∮
∂�(t)

z′

z − z′ dz′, (15)

where z ∈ �i, that is, outside the boundary.18

Solutions to (15) can be found again in the form of rational, time-dependent conformal mapping
functions from the unit disc, but in general these must map to the interior of ∂�. For instance,
substituting the polynomial function

z = f (ζ, t) = c1(t)ζ + ck+1(t)ζ k+1 (16)

(with, c1, ck + 1 real) into (15) gives

U (z, t) = c2
1 + (k − 1)c2

k+1

z
+ ck+1

1 ck+1

zk−1
, (17)
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and so the coefficients evolve according to

d

dt
(e−Qt (c2

1 + (k + 1)c2
k+1)) = d

dt
(e−Qt ck+1

1 ck+1) = 0. (18)

As with the exact solution (12), (18) may be used to determine the linear stability of a kth mode
perturbed circle by taking ck + 1 	 c1. The two results might be combined to give the stability analysis
of the coupled problem (we perform an equivalent analysis in Sec. IV A in polar coordinates).
However, the boundaries ∂� given by the two conformal maps (11) and (16) do not coincide exactly;
thus, it is generally impossible to combine the exact solutions of each individual flow problem such
that the kinematic condition (10) is satisfied.

The ellipse is an exception. One can show a mapping of the form z = c−1ζ
−1 + c1ζ exactly satis-

fies the Cauchy transform formulation (15) of the problem (see Appendix A). Somewhat remarkably,
a mapping of the same form also satisfies the modified problem when the additional coupling term
in the kinematic boundary condition is included in (15). The coupled solution is much simpler to
demonstrate in Cartesian coordinates, however. If again a(t) and b(t) are the semi-axes of an ellipse,
the following solution to Poisson’s equation (9) for the temperature T is well known:

T (x, y, t) = Qa2b2

2(a2 + b2)

(
1 − x2

a2
− y2

b2

)
. (19)

Noting that a non-unit normal is given by (bx/a, ay/b), in the absence of creep closure the kinematic
condition (10) reads(

ȧb

a2
x2 + aḃ

b2
y2

)/√
b2x2

a2
+ a2 y2

b2
= Q

ab

a2 + b2

√
b2x2

a2
+ a2 y2

b2
, (20)

and matching terms give the evolution of the semi-axes a and b

ȧ = Q
ab2

a2 + b2
, ḃ = Q

a2b

a2 + b2
. (21)

Again, since the focal points lie at ±√
a2 − b2, (21) implies that the ellipse remains confocal.

C. The full problem

We now consider the full problem (Q, P �= 0). Re-introducing the normal creep velocity for the
ellipse (14) into the kinematic condition (20) we see that the spatial form of the two terms on the
right is the same, as alluded to earlier. Matching coefficients again, we have

ȧ = − 1
2 Pb + Q

ab2

a2 + b2
, ḃ = − 1

2 Pa + Q
a2b

a2 + b2
. (22)

This coupled system may be written in terms of the evolution of area S = πab, and aspect ratio
α = b/a

Ṡ =
(

− 1
2 P

1 + α2

α
+ Q

)
S, α̇ = −(1 − α2)

(
1
2 P − Q

α

1 + α2

)
. (23)

From (23) it is clear that the decrease in area due to creep closure is at its minimum when the channel
is a circle (α = 1), and increases as the aspect ratio decreases. The end result is that an initially
elliptical channel may close in finite time, whereas a circular one can only decay exponentially to
zero (as is easily seen by substituting a = b into (22) or α = 1 into (23)). In Figure 3, we plot the
solutions for an exact solution contracting according to (22), showing the distinct behaviours of an
initially circular and initially elliptical boundary.

Unlike the circle, which is only steady if P = Q, an ellipse has a steady state for any P and Q
(given Q > P) where the aspect ratio satisfies 1

2 P(α + α−1) − Q = 0. However, for fixed P and Q
this steady state is unstable, with an elliptical channel (unless initially at the steady state) contracting
to a line or growing without bound. In Sec. V, we briefly discuss how feedback between the area S
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FIG. 3. The exact solution (22) for (a) a circle with initial unit radius, and (b) an ellipse with initial semi-axes a = 1.1 and
b = 1. Both solutions are over the same time span, for pressure P = 2, and heat source density Q = 1. The circle contracts
exponentially, while the ellipse contracts to a line in finite time, with aspect ratio decreasing to zero.

and heat density Q (or pressure P), as would appear in a more comprehensive full conduit model,
can stabilize the steady states.

As an alternative to (22) or (23), the evolution of the boundary can be written as a single
differential equation in elliptic coordinates. Since these coordinates are the natural ones to use for
the linear stability analysis in Sec. IV, this result is included below in (42).

IV. STABILITY TO HIGHER ORDER PERTURBATIONS

The above analysis does not indicate whether ellipses are stable to more general perturbations.
In this section, we derive the stability properties of both circles and ellipses to higher modes, that
is, modes that do not correspond to changes in scale or translation, or that follow the leading order
solution (22). We use polar and elliptic coordinates, respectively, so that the base state (circle or
ellipse) is represented by a constant value of one of the coordinate variables.

For the full problem, we deduce that circles are neutrally stable to second mode perturbations
(that is, perturbations that make them ellipses), and stable to all higher modes. The stability of the
ellipse depends on its aspect ratio, becoming unstable to a greater number of modes as the aspect
ratio decreases.

For simplicity, we mostly assume P and Q are such that the base state is at equilibrium; the
results may be extended to determine the stability of a time-dependent base state, but in that case
greater care must be taken to derive the correct stability criterion, as a base state is only stable if a
perturbation decays faster (or grows more slowly) than the base state decays (or grows).

A. The stability of a circle

The linear stability analysis of a circle can be obtained from the existing complex variable
solutions (12) and (18), but it is instructive to carry it out using the stress/streamfunction formulation
(3), as that approach is required for the ellipse.

Using polar (r, θ ) coordinates, let the boundary ∂� be represented by r = s(θ , t), and take ∂� to
be a perturbed circle of radius s0 by writing s ∼ s0(t) + εs̃(θ, t), for ε 	 1. Other variables also have
leading order and correction components: A ∼ A0(r, t) + ε Ã(r, θ, t), ψ ∼ ψ0(θ, t) + εψ̃(r, θ, t),
T ∼ T0(r, t) + εT̃ (r, θ, t), and so on. As is standard in the stability analysis of a circular interface,
we expect the modes of perturbation (that is, the eigenfunctions of the linear problem for s̃) to be
sinusoidal, so we consider a single mode of the form s̃ = γk(t) cos kθ , for k ≥ 2; a more general
perturbation can be considered a superposition of such modes. The growth or decay of γ k indicates
the stability of the circle to the kth mode of perturbation.
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Both A0 and Ã are biharmonic for r > s0, and as the stress boundary condition (3a) is equivalent
to A = Ar = 0 for r = s, they satisfy the linearized conditions

A0 = A0r = 0, Ã = 0, Ãr = −s̃ A0rr , r = s0. (24)

The far field conditions are A0rr + r−1A0r → P, Ãrr + r−1 Ãr → 0. Thus, with the assumed form
for s̃, we solve the leading order and correction problems sequentially to obtain

A0 = 1
4 (r2 − s2

0 ) − 1
2 s2

0 log(r/s0), Ã = − 1
2γks0

(
(r/s0)2−k − (r/s0)−k

)
cos kθ. (25)

To find the leading order and correction to the streamfunction (and hence the normal velocity to sub-
stitute into the kinematic condition), we must consider the Goursat representations that corresponds
to the above exact solutions. By inspection these are

A0 + iψ0 = 1
4 zz − 1

2 s2
0 log z + const., Ã + iψ̃ = − 1

2γksk−1
0 z1−k z + 1

2γksk+1
0 z−k + i · const.,

(26)
so the Goursat functions are

φ0 = 1
4 z, χ0 = − 1

2 s2
0 log z + const., φ̃ = − 1

2γksk−1
0 z1−k, χ̃ = 1

2γksk+1
0 z−k + i · const.

(27)
Taking the imaginary part we find ψ0 and ψ̃

ψ0 = − 1
2 s2

0θ + const., ψ̃ = − 1
2γks0

(
(r/s0)2−k − (r/s0)−k

)
sin kθ + const. (28)

Note that ψ̃ = 0 on r = s0, so the streamfunction correction does not contribute to the evolution of
modes k ≥ 2. This interesting result generalizes to the ellipse; see (46).

The leading order temperature T0 satisfies Poisson’s equation, while the correction T̃ satisfies
Laplace’s equation. The temperature condition on the free boundary implies, after linearisation,

T0 = 0, T̃ = −s̃T0r , r = s0. (29)

Solving for T0 and T̃ sequentially, again assuming the form for sk, gives

T0 = 1
4 Q(s2

0 − r2), T̃ = 1
2 Qs0γk(r/s0)k cos kθ. (30)

The kinematic condition in polar coordinates is sst = (ψθ + sψ rsθ ) − (sTr − Tθ sθ ) on r = s,
the leading and correction terms of which are

s0ṡ0 = ψ0θ − s0T0r , s0s̃t + ṡ0s̃ = (s0s̃)t = ψ̃θ − s0(T̃r + s̃T0rr ) − s̃T0r , r = s0. (31)

Substituting in (28) and (30) results in

ṡ0 = (− 1
2 P + 1

2 Q)s0, (s0γk)t = −( 1
2 k − 1)Qs0γk . (32)

Thus, a circle is at equilibrium if P = Q (as seen earlier), and all modes of perturbation are stable
except the second mode k = 2, which is neutrally stable. The second mode perturbs the circle to an
ellipse, which is also an exact solution, as described in Sec. III.

B. Stability of time-dependent state

The equations for the leading order and correction to the boundary (32) are still valid if P �= Q,
so that the channel is either contracting or expanding. The stability then depends on the perturbation
changing more slowly than the base state s0(t). Combining the two equations in (32) we obtain

d

dt
log

∣∣∣∣γk

s0

∣∣∣∣ = γ̇k

γk
− ṡ0

s0
= P − 1

2 k Q. (33)

Thus, if a circle is contracting (P > Q), it is always unstable to second mode perturbations (hence the
exact solution of an ellipse of increasing aspect ratio from Sec. III). If P is much greater than Q, then
higher modes may also be unstable; in Figure 4(b) we plot the numerical solution of a contracting

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  192.76.8.15

On: Tue, 12 Aug 2014 15:03:11



083101-10 M. C. Dallaston and I. J. Hewitt Phys. Fluids 26, 083101 (2014)

FIG. 4. The evolution of a circle perturbed by a fourth mode perturbation: (a) when pressure and heating balance (Q = P),
the circle is stable. (b) When P = 4Q, the circle is unstable according to (33), and cusps form, similar to the exact solution
for Q = 0 (see Figure 2). The solutions are computed using the numerical method outlined in Sec. IV D.

fourfold symmetric channel with P = 4Q. Cusps form on the boundary, similar to the exact solution
(11) for Stokes flow only (Q = 0) shown in Figure 2.

C. The stability of an ellipse

Now we carry out a similar process for the ellipse. As the ellipses remain confocal over time, it
is convenient to express the solution in elliptical coordinates (ξ , η), where

x = C cosh ξ cos η, y = C sinh ξ sin η. (34)

The coordinate transformation (34) (see Fig. 5) is the conformal mapping effected by the analytic
function z = C cosh ζ , where z = x + iy and ζ = ξ + iη, which maps a semi-infinite strip (ξ > 0, 0
< η < 2π ) to the plane. Any function that is continuous in the physical plane must be periodic in η

and even around ξ = 0, if defined there. The Goursat relation between stress- and streamfunctions
is now

A(ξ, η) + iψ(ξ, η) = φ(ζ ) cosh ζ + χ (ζ ). (35)

The free boundary ∂� is represented by ξ = s(η, t); if s = s0(t) is independent of η, then the boundary
is an ellipse with focal points at ±C.

In converting to elliptic coordinates, the square scale factor h2 is important

h2(ξ, η) =
∣∣∣∣ dz

dζ

∣∣∣∣
2

= 1
2 C2(cosh 2ξ − cos 2η). (36)

The Laplacian is ∇2 = h−2(∂2/∂ξ 2 + ∂2/∂η2), while the kinematic condition is now

h2st = (ψη + ψξ sη) − (Tξ − Tηsη), ξ = s(η, t). (37)

FIG. 5. The conformal mapping from elliptic coordinate system ζ = ξ + iη to the physical plane z = x + iy. A perturbation
of the form (47) is largest at the ends of the ellipse in the physical plane (a sixth mode perturbation s̃e

6 is pictured).
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It is straightforward to show that the solutions for the stress function and the temperature for an
elliptical boundary s = s0(t) are

A0 = 1
8 PC2(sinh 2ξ − 2ξ cosh 2s0) + const., (38)

T0 = 1
8 QC2 sech 2s0(cosh 2s0 − cosh 2ξ )(cosh 2s0 − cos 2η). (39)

By inspection, the corresponding Goursat functions are

φ0 = 1
4 PC2 sinh ζ, χ0 = − 1

4 PC2ζ cosh 2s0 + const., (40)

giving a streamfunction

ψ0 = − 1
8 PC2(2η cosh 2s0 − sin 2η) + const. (41)

Now differentiating and substituting into the kinematic condition, each term has a factor of h2(s0, η)
which cancels, leaving an ordinary differential equation for s0

ṡ0(t) = − 1
2 P + 1

2 Q tanh 2s0. (42)

This expression is equivalent to the previously derived exact solution (22) or (23).
The calculation of stability of an ellipse is a greater technical challenge than that for a circle,

as we cannot expect modes of perturbation to be sinusoidal functions of η, but surprisingly the
linearized correction problem can still be solved exactly. As before, define order ε correction terms
to each variable: s = s0 + εs̃, A = A0 + ε Ã, ψ = ψ0 + εψ̃ , and T = T0 + εT̃ . By substituting into
the governing equations and boundary conditions, and taking terms to O(ε), we obtain a linear
problem for the correction terms. The correction to the stress satisfies

∇4 Ã = 0, ξ > s0, (43a)

Ã = 0, Ãξ = −s̃ A0ξξ = − 1
2 s̃ PC2 sinh 2s0, ξ = s0, (43b)

∇2 Ã → ∞, ξ → ∞, (43c)

while the problem for the temperature correction term is

∇2T̃ = 0, ξ < s0, (44a)

T̃ = −s̃T0ξ = 1
2 h2s̃ Q tanh 2s0, ξ = s0, (44b)

T̃ξ = 0, ξ = 0. (44c)

The correction to the kinematic condition (37) may be written as a linear equation

(h2s̃)t = ψ̃η − (T̃ξ + s̃T0ξξ ) = L(h2s̃), ξ = s0, (45)

where the linear dependence of the right hand side on s̃ comes from solving the correction problems
(43) and (44). The correction to the streamfunction ψ̃ is again related to Ã through the Goursat
relation (35). In fact, given the problem (43) for Ã, the linear operation mapping s̃ to ψη is quite
degenerate; we derive the following result in Appendix B:

ψ̃η = 1
4 PC4 sinh2 2s0

(〈
s̃

h2

〉
+

〈
s̃

h2
cos η

〉
cos η +

〈
s̃

h2
sin η

〉
sin η

)
, ξ = s0, (46)

where 〈 · 〉 represents the average over η ∈ [0, 2π ].
The form of (45) and (46) suggests an exact solution as a series

s̃(η, t) = s̃e
0(η, t) +

∞∑
k=1

s̃e
k (η, t) + s̃o

k (η, t), s̃e
k = γ e

k (t)
cos kη

h(s0, η)2
, s̃o

k = γ o
k (t)

sin kη

h(s0, η)2
. (47)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  192.76.8.15

On: Tue, 12 Aug 2014 15:03:11



083101-12 M. C. Dallaston and I. J. Hewitt Phys. Fluids 26, 083101 (2014)

(Unlike the circle, it is important to distinguish sine and cosine terms here as the ellipse is not
rotationally invariant.) The k = 0 and k = 1 terms in (47) correspond to changes in scale and
translation, with respect to which the problem is invariant, so we focus on the higher terms k ≥ 2.
However, it is important to note that higher order terms do induce a change in the k = 0, 1 terms
through (46), so they cannot be considered modes in the normal sense. If the base state s0 is constant,
a true mode (that is, an eigenfunction of L in (45)) can be constructed by adding on an appropriate
low order term to s̃e

k or s̃o
k . This is not the case when ṡ0 �= 0, so for the sake of simplicity we consider

only the fate of the higher order terms themselves, ignoring their contribution to the k = 0, 1 terms.
The degeneracy of (46) means that the evolution of γ̃k for k ≥ 2 depends only on the solution

to the heating problem (44). Given a single cosine term s̃e
k we find

T̃ = 1
2 Q tanh 2s0

cosh kξ

cosh ks0
γ e

k cos kη, (48)

thus from (45) it follows

γ̇ e
k = − 1

2 Qγ e
k (k tanh 2s0 tanh ks0 − 2), (49)

where k ≥ 2. For sine terms s̃o
k the result is

γ̇ o
k = − 1

2 Qγ o
k (k tanh 2s0 coth ks0 − 2). (50)

For k = 2, it is easy to check that a cosine mode s̃e
2 evolving by (49) (combined with the appropriate

k = 0 term) is equivalent to a perturbation along the exact base solution (42). Also, (50) implies the
second sine perturbation s̃o

2 , which corresponds to a rotation of the ellipse, is neutrally stable.
While the series solution (47) holds for time-dependent s0, for simplicity we will consider the

case where the leading order solution to be at steady state; from (42) this occurs when P = Q
tanh 2s0. In this case, the only time dependence is in the coefficient γ k, so stability is determined by
the sign of γ̇ e

k and γ̇ o
k from (49) and (50), respectively.

From (50) it follows that γ̇ o
k is negative for all s0 > 0, k ≥ 3 (recall k = 2 is a neutrally stable

rotation) so the sine terms are stable for all steady ellipses. A cosine term, however, will be unstable
when s0 is less than a critical value s∗

0 (k), given by the right hand side of (49) equal to zero (note s0

= tanh α ∼ α for small s0, where α is the aspect ratio). The first couple of these (not counting k =
2) can be calculated explicitly

s∗
0 (3) = log( 1

2 (
√

5 + 1)) ≈ 0.48, s∗
0 (4) = 1

2 log( 1
2 (

√
6 +

√
2)) ≈ 0.33, (51)

with higher s∗
0 (k) decreasing asymptotically to zero as k → ∞.

D. Numerical method

To illustrate the above stability analysis, we construct numerical solutions to the coupled problem
(1), (9), (10). The numerical method we use is a boundary integral formulation in physical (u, p, T )
variables. The free boundary is discretized with N nodes, with the normal n to the boundary computed
using centred finite differences. The ice velocity u and normal derivative of the temperature ∇T · n
are both computed by solving discretized versions of the singular linear integral equations (that
is, linear matrix equations),23, 24 and then the node positions are moved according to (10) using an
explicit ODE solver (ode45 in Matlab). Due to the stress-free boundary condition (1b), the equation
for u only includes the double layer potential, and so possesses only a removable singularity at the
reference point, but does not uniquely determine u. To close the problem we include an additional
equation for the pressure using the Lorentz reciprocal theorem,25 with the origin (assumed to be
interior to the boundary) as a reference point.

As temperature T satisfies Poisson’s equation (9) we subtract off a particular solution (that is,
T̂ = T − 1

4 Q(x2 + y2)) and use the boundary integral formulation for Laplace’s equation. We deal
with the logarithmic singularity at the reference point by approximating the free boundary and the
temperature derivative as piecewise linear, and exactly calculating the improper integrals on the two
line segments adjacent to the singularity.
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FIG. 6. Numerical solutions to the coupled creep closure/melting problem (1), (9), (10) using the method outlined in
Sec. IV D: (a) a sufficiently “fat” shape tends to an ellipse; (b) a shape with small aspect ratio, even if initially close to an
ellipse, forms outward-pointing cusps at the ends where curvature is greatest.

In Figure 6, we show the results of two computations. In both cases, the pressure P and heat
source density Q are set such that the initial condition is a perturbation of a steady ellipse. In
Figure 6(a), the initial condition is a large perturbation, symmetric in both axes, from an ellipse
of moderately large aspect ratio. The free boundary tends towards an ellipse. In Figure 6(b), the
initial condition is a smaller perturbation (again symmetric in both axes) of an ellipse with aspect
ratio 0.2. This aspect ratio is less than the critical value s∗

0 (4) (51) at which the fourth mode s̃e
4

becomes unstable. The result is that the perturbation grows, most noticeably at the end points, where
cusps (pointing into the ice) appear to form in finite time. Since such cusp formation is the generic
behaviour of contracting Stokes flow without the inner heating (see Figure 2), the same behaviour
here seems quite reasonable.

V. DISCUSSION AND EXTENSIONS

In this section, we consider some extensions to the idealized theory from Secs. III and IV. That
theory has shown that assuming Newtonian creep for the ice flow and a uniform heat source within
the conduit, the free boundary can expand and contract as a series of confocal ellipses. Here, we first
consider the family of possible steady states; second, we consider an alternative melting model; and
third we consider the implications of non-Newtonian creep.

A. Feedbacks between cross-sectional area, source heating, and pressure

The exact elliptical solution in (23), expressed in terms of cross-sectional area S and aspect ratio
α, can be described by trajectories in the (S,α) phase plane, as in Figure 7(a). There is a continuous

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  192.76.8.15

On: Tue, 12 Aug 2014 15:03:11



083101-14 M. C. Dallaston and I. J. Hewitt Phys. Fluids 26, 083101 (2014)

FIG. 7. Trajectories of elliptical cavities in the space of cross-sectional area S and aspect ratio α. (a) When the heat source
density Q is fixed, the steady state given by (52) is unstable. (b) If heat source Q = 1/S, this can stabilize the ellipse with
respect to perturbations along the trajectory.

family of steady states given by

Q − 1
2 P

1 + α2

α
≡ F(α) = 0, (52)

which determines a line of constant α intersecting each trajectory. As is clear from the directions
of the trajectories in Figure 7, this steady state is unstable; more circular ellipses (F > 0) grow
indefinitely, while thinner ellipses (F < 0) will contract to a line in finite time, as in Figure 3.

So far we have taken effective pressure P and heat source density Q to be constant. However, in
more comprehensive models of a meltwater conduit, there is likely to be a feedback of the size and
shape of the cross-section on both of these two parameters, due to the internal hydrodynamics. Our
exact solution (23) is still valid if P and Q change over time, and we can therefore consider making
them functions of S, for instance. The steady states are still given by (52) but now with F = F(S, α).
The equilibrium line on the phase plane depends on the form of P and Q; if Q is decreasing (or P is
increasing) in S, the effect may be to stabilize the family of steady states.

As a simple example, suppose we required that the total energy source QS (per unit length of
the conduit) be constant. Then Q ∝ 1/S (note that this introduces a length scale into the problem,
which can be used to set the constant of proportionality to unity). The resulting family of steady
states is depicted on the phase plane in Figure 7(b); the steady states are now stable.

On the other hand, the standard circular-cavity models often take the overall heating rate due
to turbulent dissipation to be proportional to Sα , with α > 1 and the proportionality depending
on the potential gradient and the wall roughness;6 this suggests the uniform heat source density
should vary in proportion to Sα − 1, and makes the steady state even more unstable to perturbations.
Such a runaway melting instability is well known to glaciologists, and is thought to be responsible
for enormous subglacial floods;27 it can be stabilized be a compensating increase in the effective
pressure as S grows.

B. A uniform melting model

If the heating is caused by viscous dissipation in turbulent flow, it is likely that most heat is
produced in a narrow boundary layer near the channel wall, as opposed to uniformly across the
channel. The existing circular-conduit models effectively assume that all heat is produced at the
channel wall and goes directly into melting at the interface. If we adopt the same assumption in our
model, there is no internal heat problem to solve and the kinematic condition (10) is simply replaced
by

vn = u · n + M(t), (53)

where M is the uniform melt rate at the perimeter.
In this case, an ellipse is no longer an exact solution (an initially elliptical interface will

immediately evolve into a different shape). The stability analysis for a circle is still applicable,
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FIG. 8. A fourfold symmetric channel with melting at the edge, evolving according to (53). A circular channel is unstable
as predicted by (54), and the boundary develops inward-pointing corners. The boundary does not appear to be approaching a
steady state.

however. For a kth-mode perturbed circle r = s0(t) + εγ k(t) cos k(θ ), the leading order and correction
give

ṡ0 = − 1
2 P + M, (s0γk)t = Mγk (54)

(compare with (32)). Thus, if the circle is at steady state (M = 1
2 P), all modes of perturbation grow

at a rate γ̇k = 1
2 Pγk .

The numerical method described in Sec. IV D is easily adapted to the new kinematic condi-
tion (53). In Figure 8, we display the results of an initially circular interface with a fourth mode
perturbation. The unstable boundary develops inward-pointing corners, instead of outward-pointing
cusps, as occurs for the Stokes flow problem without melting.14 The corners continue to propagate
inwards, and the boundary does not appear to approach a steady state.

To gain a better understanding of the morphology of the conduit walls, a more realistic model
of heating and heat transfer in the boundary layer near the wall is probably needed. In such a model,
the distribution of melting along the interface would be almost uniform but somehow related to the
local geometry of the boundary (the local curvature, for instance). Coupled with the inward creep
of ice, this could lead to the existence of a stable, non-circular cross section. A similar model of
turbulent boundary layer heating is also needed to model the rough scalloped walls that develop
in real meltwater conduits. Although such scalloping also occurs in situations where creep closure
is not applicable, our results concerning the instability of the free-boundary in creeping flow raise
intriguing questions about the interaction between turbulent flow and ice deformation. We leave
these questions for future work.

C. A non-Newtonian flow model

The theory of exact solutions for free boundary Stokes flow described in Sec. III A requires
that the fluid be Newtonian. It is more accurate to model creeping ice as a shear-thinning power
law fluid with viscous stress tensor τ = A|D|n−1 D, where the power-law exponent n ≈ 1

3 (note the
reciprocal of n is more commonly used in the glaciology literature where strain rate is defined as
a function of stress; we follow the usual opposite convention from fluid mechanics). Given such a
rheology, the only exact solutions known are ones with circular symmetry, such as those considered
by Nye5 (the methods used previously can no longer be used to find other exact solutions). However,
the stability analysis of the contracting circle to small perturbations (that is, the generalisation of
Sec. IV A) is still tractable. We summarize this analysis below, disregarding the effect of melting for
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FIG. 9. Results of the linear stability analysis for a shear thinning fluid (n < 1): (a) the four exponents a in the ansatz (55),
for k = 2 (see (C2)). The two aj with negative real parts are the relevant ones for fluid flow outside a perturbed circle. For
sufficiently small n, the two exponents are complex conjugate, implying that physical variables (velocity u, pressure p) exhibit
damped oscillations in r. (b) The nondimensional growth rate Ck of kth mode perturbations, against power law exponent n.
The effect of shear thinning is to reduce the instability in lower order modes, while as k → ∞, the growth rate approaches
the Newtonian growth rate.

simplicity; the effect of melting can be subsequently included in the kinematic condition if desired,
and will have a similar stabilizing effect as described earlier.

Again we use polar coordinates and write the free boundary as r = s0(t) + εγ k(t) cos kθ . While
a stress function formulation is no longer possible, the O(ε) linear correction problem may be solved
in terms of the primary variables (that is, velocity u = uer + veθ and pressure p). We look for
correction terms of the form

ũ = (U1ra1(k) + U2ra2(k)) cos kθ,

ṽ = (V1ra1(k) + V2ra2(k)) sin kθ, (55)

p̃ = (P1rb1(k) + P2rb2(k)) cos kθ.

Closed form expressions for the coefficients and exponents are determined from the governing
equation and boundary conditions; the expressions are somewhat unwieldy and are deferred to
Appendix C. For shear thinning flow n < 1, the exponents aj and bj may be complex, implying
that the velocity and pressure may oscillate outward from a perturbed cavity. In Figure 9(a), we
plot the exponents for the second mode k = 2 over different n; the exponents become complex for
n � 0.8. The value below which exponents are complex tends asymptotically to n = 1 as mode number
k → ∞.

From the kinematic condition, we derive formulae for the evolution of the leading order radius
s0 and the kth mode magnitude γ k

ṡ0 =
(

np∞

A

)1/n

s0, γ̇k =
(

np∞

A

)1/n

Ck(n)γk . (56)

The first of these is the result obtained by Nye5 for a circular cavity, while the kth mode nondi-
mensional growth rate Ck (defined in the appendix) depends only on the power-law exponent n and
mode number k. In Figure 9(b), we plot these values over n for various k. While all modes are
unstable for any n, in a shear thinning fluid the lower modes grow more slowly than the higher ones.
As k → ∞, the growth rate is bounded by the Newtonian growth rate Ck = 1, that is, high mode
perturbations asymptotically grow at the same rate that the leading order radius contracts. Thus, we
generically expect cusp formation still to occur for the contracting cavity in shear-thinning flow, as
for the Newtonian case.

It would be worthwhile using a numerical scheme to test the predictions of this linear stability
analysis, including the oscillations in velocity and pressure due to the complex values of the exponents
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aj. The boundary integral method we employed in Sec. IV D does not extend to non-Newtonian
fluids, but finite elements might be used. In addition, while not relevant to ice flow, the stability of
contracting cavities in shear thickening fluid (n > 1) is also worth further exploration. Although our
linear stability analysis formally extends to n > 1, in this regime one of the exponents in the velocity,
aj, is larger than −1 (see Figure 9). Since the leading order velocity u0 ∝ 1/r, the asymptotic series
in ε will not be uniformly valid as radius r → ∞. We leave this issue for future study.

D. Summary and conclusion

We have applied techniques from the theory of two-dimensional free-boundary problems to
understand the cross-sectional evolution of a conduit that contracts due to creep closure, and expands
due to melting of the walls. Assuming Newtonian creep for the ice and a uniform heat source in
the water, an exact solution exists in which the boundary contracts or expands as a series of ellipses
with fixed focal points. A key implication of this theory is that the rate of conduit closure, given by
(23), depends upon the aspect ratio. The closure rate is larger for smaller aspect ratios, and as the
aspect ratio shrinks to zero, the cross-sectional area shrinks to zero in finite time. For a given total
energy source, a conduit with smaller aspect ratio therefore requires a smaller effective pressure to
be in steady state.

We analysed the stability of the circular and elliptical solutions, and constructed numerical
solutions using boundary integral techniques. These show that for fat enough ellipses, uniform
heating acts to stabilize perturbations of the interface, but for small aspect ratio ellipses, the interface
is unstable. This instability may help explain the convoluted shapes of many englacial conduits.28

Although derived from an idealized system of equations, we believe the behaviour of these solutions
qualitatively captures much of the behaviour of the real physical system. Similar behaviour is seen
in numerical computations that employ different assumptions of ice rheology and melting,10 and
the suggestion that shallow aspect ratio ellipses close more quickly was previously used to explain
higher observed water pressures than predicted by the circular-conduit theory.8 Extensions to the
current theory that account for non-Newtonian behaviour and uniform melting, outlined earlier in
this section, do not significantly alter the results. The most significant difference is that uniform
wall melting is ineffective at stabilizing the interface to perturbations, and this suggests that a more
detailed analysis of the turbulent heat transfer problem would be a worthy case for further study.
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APPENDIX A: CAUCHY TRANSFORM FOR SQUEEZE FLOW (POISSON EQUATION)
WITH ELLIPTIC BOUNDARY

The external Cauchy transform U of a boundary evolving according to Hele–Shaw squeeze
flow, with plate separation B(t), satisfies18

∂

∂t
[B(t)U (z, t)] = 0, U (z, t) = 1

2π i

∮
∂�

z′

z − z′ dz′, (A1)

where z is outside ∂�. An ellipse is the image of the unit circle under z = c−1ζ
−1 + c1ζ , thus

U (z(ζ, t), t) = − 1

2π i

∮
|ζ |=1

(c−1ζ
′ + c1ζ

′−1)(−c−1ζ
′−2 + c1)

c−1ζ−1 + c1ζ − c−1ζ ′−1 − c1ζ ′ dζ ′.

Here, ζ is taken to be the preimage of z that is in the unit disc (there is another one outside). The
coefficients c−1 and c1 are taken to be real and positive functions of t (this changes the orientation
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of the curve, which introduces the minus sign). The integrand has two poles at ζ ′ = 0, ζ , with

Res
ζ ′=0

[integrand] = c−1

c1

(
c−1

ζ
+ c1ζ

)
, Res

ζ ′=ζ
[integrand] = −

(
c−1ζ + c1

ζ

)
,

so the integral can be computed easily enough

U (z, t) =
(

c−1 − c2
1

c−1

)
ζ = c2

−1 − c2
1

2c−1c1z

(
1 −

√
1 − 4c−1c1

z2

)
.

Changing back to z is necessary as it is the time derivative holding z constant that vanishes in (A1).
A constant term −Q in Poisson’s equation corresponds to B(t) = e−Qt, thus (A1) is satisfied given

d

dt

(
(c2

−1 − c2
1)e−Qt

) = 0,
d

dt
(c−1c1) = 0.

These two equations give the exponential increase in area and fixed focal points, respectively.
One might be concerned that the functional form of this Cauchy transform is altered by the

additional term in the kinematic condition when coupled to the external viscous flow problem. That
coupling generates an extra term in (A1), but it can be shown that for the particular case of an
ellipse this has the same functional form (in z) and that it gives rise to a modification of the evolution
equations, as in (22). Similarly, one can construct the Cauchy transform of the exterior domain,29 and
find that the additional terms from the full kinematic boundary condition have the same functional
form for the exact solution.

APPENDIX B: THE CORRECTION TO THE STREAMFUNCTION

Here, we provide detail on the derivation of Eq. (46) for the correction to the derivative of the
streamfunction ψ̃ , given the problem (43) for the correction to the stress function. The degeneracy
of (46) is due to the free boundary condition Ã(s0, η) = 0, and the Goursat relation (35) that relates
Ã and ψ̃ through the corrections to the Goursat functions, φ̃ and χ̃

Ã + iψ̃ = φ̃(ζ ) cosh ζ + χ̃(ζ ).

Noting that ζ = ζ − 2s0 on ξ = s0, define the complex-valued functions

F(ζ ) = φ̃(ζ ) cosh(ζ − 2s0) + χ̃ , G(ζ ) = Fζ (ζ ) − 2φ̃(ζ ) sinh(ζ − 2s0),

so that F and G are analytic for ξ > s0, while on ξ = s0, F(ζ ) = Ã + iψ̃ and G(ζ ) = Ãξ + iψ̃ξ . The
corrections to pressure and velocity must vanish in the far field, which determines the behaviour of
φ and χ for large ξ (see Tanveer and Vasconcelos14)

φ̃ ∼ φ∞ ∈ C,
dχ̃

dz
∼ φ∞

C
⇒ χ̃ ∼

∫
φ∞
C

dz

dζ
dζ ∼ φ∞

2
eζ , ξ → ∞.

(Note that a factor of C was incorporated into φ in (35).) The complex constant φ∞ is determined
below. The far field behaviour of F and G is then

F ∼ (
1
2φ∞e−2s0 + 1

2φ∞
)

eζ , G ∼ (− 1
2φ∞e−2s0 + 1

2φ∞
)

eζ , ξ → ∞.

In addition, for all physical variables to be single-valued, G and Fζ (but not necessarily F) must be
periodic with period 2π i. Given �(F) = Ã = 0 on ξ = s0, the form of F is uniquely determined up
to a few constants

F(ζ ) = φ∞ sinh ζ − φ∞ sinh(2s0 − ζ ) + b(ζ − s0) + ic,

where b and c are additional free constants. Thus, the correction to the streamfunction only has the
terms

ψ̃η(s0) = �(F)η = b + 2 cosh s0φ
′
∞ cos η + 2 sinh s0φ

′′
∞ sin η,

where we write φ∞ = φ′
∞ + iφ′′

∞. The constants b, φ′
∞, and φ′′

∞ are determined from the condition
�(G) = Ãξ on ξ = s0, which allows them to be computed in terms of integral quantities of Ãξ , and

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  192.76.8.15

On: Tue, 12 Aug 2014 15:03:11



083101-19 M. C. Dallaston and I. J. Hewitt Phys. Fluids 26, 083101 (2014)

thus s̃. Given

G(ζ ) = φ∞ cosh ζ + φ∞ cosh(ζ − 2s0) + b − 2φ̃(ζ ) sinh(ζ − 2s0),

the following integrals are computed using complex residues:

C2
∫ 2π

0

Ãξ

h2
dη = − �

(∮
�

G(ζ )

sinh ζ sinh(2s0 − ζ )
dζ

)
= 4πb

sinh 2s0
,

C2
∫ 2π

0

Ãξ

h2
cos η dη = − �

(∮
�

G(ζ ) cosh(ζ − s0)

sinh ζ sinh(2s0 − ζ )
dζ

)
− 4πφ′

∞ sinh s0 = 4πφ′
∞

sinh s0
,

−C2
∫ 2π

0

Ãξ

h2
sin η dη = − �

(∮
�

G(ζ ) sinh(ζ − s0)

sinh ζ sinh(2s0 − ζ )
dζ

)
+ 4πφ′′ cosh s0 = 4πφ′′

∞
cosh s0

.

Here, � is the boundary of the semi-infinite strip ξ > s0, −δ < η < 2π − δ, and the integrand in
each case has two simple poles at ζ = 2s0 and ζ = 2s0 + iπ . In the latter two cases, the integrand
approaches a non-zero value as ξ → ∞ so the integral there is subtracted off. Rearranging for the
constants, using the stress condition (43b) and substituting into ψ̃η we obtain the result (46)

ψ̃η(s0) = PC4 sinh2 2s0

4

(〈
s̃

h2

〉
+

〈
s̃

h2
cos η

〉
cos η +

〈
s̃

h2
sin η

〉
sin η

)
,

where 〈·〉 = (2π )−1
∫ 2π

0 · dη is the average over η ∈ [0, 2π ].

APPENDIX C: LINEAR STABILITY OF A CIRCLE IN A SHEAR-THINNING FLUID

Here, we provide detail on the linear stability analysis of a contracting circle in a power-law
fluid discussed in Sec. V C. Assume a power law fluid (n < 1 shear thinning, n > 1 shear thickening),
so that

σ = −p I + A|D|n−1 D,

where σ is the stress and D is the strain rate tensor. We scale stresses by [σ ] = p∞ and time by
[t]n = A/(np∞), which turns out to be the time scale of the contraction rate of the leading order
circle. In polar coordinates, the strain rate is

D =
[

ur
1
2 (vr + 1

r uθ − 1
r v)

1
2 (vr + 1

r uθ − 1
r v) 1

r u + 1
r vθ

]
,

where u and v are the radial and azimuthal velocity components, respectively. Note 1
r u + 1

r vθ =
−ur from conservation of mass ∇ · u = 0, so D is trace-free. The effective strain rate is |D| =√

D2
rr + D2

rθ . Expanding near a circle: u ∼ u0(r ) + εũ(r, θ ), v ∼ εṽ(r, θ ), etc., we find |D| ∼ u0r +
εũr , thus the leading order and correction terms for σ are

σ 0 =
[

−p0 + nun
0r 0

0 −p0 − nun
0r

]
,

σ̃ =
[

− p̃ + n2un−1
0r ũr

1
2 nun−1

0r (ṽr + 1
r ũθ − 1

r ṽ),
1
2 nun−1

0r (ṽr + 1
r ũθ − 1

r ṽ) − p̃ − n2un−1
0r ũr

]
.

The governing equation is ∇ · σ = 0. The leading order problem is thus

∇ · σ 0 =
[

∂r [−p0 + nun
0r ] + 2

r nun
0r

0

]
= 0.
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Conservation of mass implies u0 = −B/r, from which the above and the dimensionless far field
condition p → 1 gives

p0 = 1 + (n − 1)Bn

r2n
,

where B is still to be determined from the stress boundary condition (see below). The governing
equation for the correction terms is

∇ · σ̃ =
⎡
⎣ ∂r

[− p̃ + n2un−1
0r ũr

] + 1
r ∂θ

[
1
2 nun−1

0r (ṽr + 1
r ũθ − 1

r v)
] + 2

r n2un−1
0r ũr

∂r
[
nun−1

0r (ṽr + 1
r ũθ − 1

r v)
] + 1

r ∂θ

[− p̃ + n2un−1
0r ũr

] + 1
r

(
nun−1

0r (ṽr + 1
r ũθ − 1

r v)
)
⎤
⎦

= 0. (C1)

While the linear perturbation problem can be solved in closed form, the expressions are compli-
cated enough that we used a Computer Algebra System (Maple) to handle the algebraic manipulation.
Consider a mode k perturbation to the circle, that is, s = s0(t) + εs̃(θ, t), where s̃ = γk(t) cos kθ .
Given the velocity and pressure corrections ũ, ṽ, and p̃ must vanish in the far field, they take the
form

ũ = (U1ra1 + U2ra2 ) cos kθ,

ṽ = (V1ra1 + V2ra2 ) sin kθ,

p̃ = (P1rb1 + P2rb2 ) cos kθ,

where aj, bj < 0. From conservation of mass, Vj = −(1 + a j )U j/k, and from the governing equation
(C1) we find bj = aj + 1 − 2n and obtain equations for Pj and aj. Upon solving,

Pj = 1

2
nBn−1

(
2a j

2n − 4a j n2 − a j
2 + 6na j − k2 + 1

a j + 1 − 2n

)
U j ,

and there are four potential solutions for aj

a j = (n − 1) ±
√

2k2n − k2 + n2 + 2 ± 2
√

d, (C2)

d = n(n − 1)k4 − ((n − 1)2 + n)k2 + (n − 1)2.

Only two aj’s have negative real part and these may be complex conjugate pairs when n < 1 (see
Figure 9(a)). We specify a1 to be the (−, +) case, and a2 to be the (−, −) case of (C2).

On the free boundary, the stress boundary condition is σ · n = 0. The unit normal to order ε is

n ∼
[

1
0

]
+ ε

[
0

s̃θ /s0

]
.

The leading order and correction boundary conditions are then

σ 0 · n0 = 0, σ̃ · n0 + s̃σ 0r · n0 + σ 0 · ñ = 0, r = s0.

From the leading order stress condition we find B = s2
0 . The correction terms determine U1 and U2.

Finally, the two terms in the expansion of kinematic condition are ṡ0 = u0 and s̃t = ũ + u0r s̃, from
which we determine the evolution of s0 and γ k

ṡ0 = −s0, γ̇k = Ckγk, (C3)

where Ck is given by the rational function

Ck = B

s2
0

+ U1

γk
sa1

0 + U2

γk
sa2

0 = H2(k)n2 + H1(k)n + H0(k)

J2(k)n2 + J1(k)n + J0(k)
, (C4)
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with the coefficients

H2 = 24k2 + 8 + 16a2 + 16a1 + 8a1a2,

H1 = (−8a2 − 8a1 − 12) k2 − 4 − 16a1 − 16a2 − 8a2
2 − 20a1a2 − 4a2

1a2 − 8a2
1 − 4a2

2a1,

H0 = −3k4 + (
a2

2 + 2 + 4a1a2 + 4a2 + 4a1 + a2
1

)
k2,

+ 1 + 4a2 + 8a1a2 + 4a2
2a1 + 4a1 + 3a2

1 + 4a2
1a2 + 3a2

2 + a2
1a2

2,

J2 = −8k2 + 8a1a2 + 8,

J1 = 4k2 − 4a2
1a2 − 4a2

2a1 − 4a1a2 − 4,

J0 = k4 + (
a2

1 + a2
2 − 2

)
k2 + a1 2a2

2 − a2
2 − a2

1 + 1.

Returning to dimensional values gives (56).
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